mobile

"You never change things by fighting the existing reality. To change something, build a new model that makes the existing model obsolete."

Buckminster Fuller, philosopher, futurist and global thinker (1895 - 1983)

Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs."

The Report of the U.N. Brundtland Commission, Our Common Future, 1987

"Then I say the Earth belongs to each generation during its course, fully and in its right no generation can contract debts greater than may be paid during the course of its existence"

Thomas Jefferson, September 6, 1789

JOIN US IN COLOGNE!

Special sessions

SPECIAL SESSION: Improving manufacturing processes by fostering sustainable innovation strategies
Session resume:

Manufacturing routes of products should be linked to a circular economy thinking to minimise impact related to product design as required in the framework of smart industries 4.0. In this vein, sustainable manufacturing production approaches promote strategies towards the creation of products that use minimal resources, have minimal environmental impacts and provide acceptable costs to society.

Due to the multiple activities involved in the manufacturing sector, opportunities for attaining improvement in its life cycle are considerable. This not only implies minimal energy and material consumption related actions to attain specific products, but also appropriate management of residues and by-products involved across the overall product life cycle. Due to the broad spectrum of alternatives, incorporating decision making tools, such as Life Cycle Assessment (LCA) or multicriteria approaches, is also a key issue to underline the importance of the best available alternative. In this context, this Special Session aims at bringing together research advances, case studies and practices targeted at reducing related impacts (e.g., economic, environmental, resources) attributed to manufacturing processes. Papers relevant to the scope of this special session include, but are not limited to, the following areas: sustainable use of resources (materials, energy and wastes), innovative manufacturing technologies, value chain optimization actions, circular economy strategies and product eco-design.

Dr. Maryori C. Díaz-Ramírez
Instituto Universitario de Investigación Mixto CIRCE
Zaragoza, Spain
Dr. Maryori C. Díaz Ramírez is currently researcher within the Energy and Environment Group (Industry and Energy Area) of the CIRCE (Research Centre for Energy Resources and Consumption) Foundation. She is Chemical Engineer graduated with honors at University of Carabobo (Venezuela) in 2001. After gaining experience as Process Engineer, she was awarded by the Alban Programme in 2004 to get a Master Degree in Eco-Efficiency, Energy Saving and Renewable Energy Technologies at CIRCE-University of Zaragoza. She also holds a European Ph.D. in Renewable Energy and Energy Efficiency by the University of Zaragoza. During her Ph.D. studies, she was awarded by the Guest Scholarship Program 2007/08 for Advanced Academic Studies or Research in Sweden and by the Ph.D. European Mention Scholarship Program 2009/2010 of the University of Zaragoza to perform two research fellowships; one at Umeå University (2008-2009) and another one at the Technical University of Denmark, DTU (2010).
Her research career at CIRCE involves more than 10 years of consolidated professional experience performing several national and European R&D&I projects. Maryori actively works on developing sustainable and innovative solutions adapted to the current needs of the smart industry. As part of her work, Maryori has participated in research actions aimed to support decision making process by applying methodological assessment approaches, such as Life Cycle Assessment (LCA) or multi-objective optimisation tools. Recent works include several H2020 projects focused on different topics, such as: optimization of energy intensive processes, new battery development, innovative technologies to minimise emissions from geothermal plants and plastic recycling processes. Experience gained by Maryori during her professional career has been published in peer-reviewed papers in JCR listed journals, publications in international conferences and book chapters.

Invited papers (5)
SPECIAL SESSION: Transition Processes towards Sustainable Energy, Water and Environment Systems: The Graduate Institute of North-Rhine Westphalia (NRW)
Session resume:

The transition of energy and raw materials from finite and fossil resources towards renewable or reusable energy sources and raw materials will be discussed within this special session. Innovation, growth potential and public attention in these areas are of enormous importance to the future development of our societies.

Members of the Graduate Institute NRW – the association of 21 Universities of Applied Sciences within the state of North Rhine Westphalia – within the “Resources” group perform research with the focus on designing future environment systems. More than 120 professors and PhD students perform interdisciplinary research on a wide range of topics like bio economy, micro plastic, circular economy, mobility, renewable energy and agricultural economics. The following topics will be addressed here:

  • Are transition processes towards renewable and reusable sources always sustainable? And when do transition processes make economic sense?
  • What are sustainable sources of renewable and reusable raw materials for the coming decades?
  • How important can renewable and reusable resources be in structural change?
  • Which methods of processing renewable raw materials are there, which will be developed?
  • What potential do chemistry, process engineering and biotechnology offer for the use of alternative raw materials?
  • How can industry be involved into the transition processes? Are there completely new markets to be opened up?
  • What is the potential of the energetic use of resources, e.g. in the field of fuels and energy?
Prof. Ingo Stadler
TH Köln
Cologne, Germany
Prof. Dr.-Ing. habil. Ingo Stadler researches and teaches at the TH Köln, where he is responsible for renewable energy and energy economics and is involved in the Cologne Renewable Energy Institute (CIRE), which he co-founded.
He completed his doctorate and habilitation at the University of Kassel. His work covers grid integration of renewables and renewable energy systems and focuses on non-electric storage and load management beyond electricity.
He is a member of the Scientific Advisory Board of the International Conference on Renewable Energy Storage IRES and the International Centre for Sustainable Development of Energy, Water and Environmental Systems SDEWES. For more than a decade he represented Germany in the Photovoltaic Systems Programme of the International Energy Agency IEA.
He is also the editor, together with Prof. Dr. Michael Sterner from OTH Regensburg, of the standard work on energy storage - demand, technologies, integration, published by Springer-Verlag.
In addition, he has been involved in various projects in Brazil for over twenty years, including with the University in Fortaleza and projects with the Society for Cooperation and the regulatory authority ANEEL.
Prof. Ralf Holzhauer
Westfälische Hochschule
Gelsenkirchen, Germany
Prof. Dr.-Ing. Ralf Holzhauer studied mechanical engineering at the Technical Universities of Dortmund and Hannover. At the University of Dortmund he passed his degree as Dr.-Ing. According to the relevant professional activities in the fields of materials handling, logistics and waste management, he was appointed in 1994 to the Chair of recycling technology of the University of Applied Sciences Westfälische Hochschule Gelsenkirchen. Currently, the work focuses on the design of recycling processes and process technology for future energy sources.
Prof. Holzhauer is part of various associations. He is a board member of the VDI Society for Energy and Environmental Technology and director of the business development center Ruhr for circular economy.

Invited papers (5)
SPECIAL SESSION: Solar Energy Storage
Session resume:

The development of efficient and cost competitive energy storage systems is required for the massive deployment of solar energy power systems. This active R&D field  comprises mature technologies already commercial but with challenges regarding cost reduction, systems integration or long term reliability, among others as well as energy storage emerging technologies with promising pathways but with open issues about their scalability and market penetration.

This special session is focused on the analysis and discussion of trends and technologies for energy storage of solar energy. It includes the analyses, simulation and tests of existing and emerging solar energy storage technologies. Its scope on solar energy storage includes: solar energy storage systems integration; development and analysis of components; development and analysis of materials; economics of solar energy storage; policy on solar energy storage without excluding other related R&D areas. 

[+ more]
Prof. Ricardo Chacartegui
University of Sevilla
Seville, Spain
Ricardo Chacartegui. . PhD in Energy Engineering. Msc Mechanical Engineer.
Ricardo is Professor of the Energy Engineering Department of the University of Seville. His research is oriented to Energy Storage and Low carbon economy technologies: design, development, and optimization. It comprises the development of new technologies, concepts and integrations: energy storage , carbon capture, SCO2, HAT cycle, high temperature fuel cell hybrid systems, ORCs, biomass boilers,..; combined with improvements of existing technologies and systems: solar and fossil fuels power systems or energy applications (CHP,DH, buildings).
Linked to the R&D activity he has participated in more than 60 R&D collaborative projects with energy and transport industries in product development, analysis and optimization. In addition he is very passionate in innovation and business creation activities.
Prof. Valerie Eveloy
Khalifa University
Abu Dhabi, United Arab Emirates
Dr. Valerie Eveloy holds a Ph.D. degree in mechanical engineering (Dublin City University, Ireland) and a M.Sc. degree in physical engineering (National Institute of Applied Science, France). She has thirty years academic and industrial experience in mechanical and energy engineering, and is currently professor in the department of mechanical engineering at Khalifa University, Abu Dhabi, United Arab Emirates. Prior to joining Khalifa University, she was with The Petroleum Institute (now part of Khalifa University), the University of Maryland-College Park, and Nokia. Her current research interests include energy system/process modeling and optimization, hydrogen and other energy vectors from renewable power, energy recovery, multi-generation, sustainable cooling, and computational fluid dynamics. She has authored or co-authored over 140 refereed journal and conference publications in these areas, book chapters, and co-edited several international energy conference proceedings. She is an editorial board member of several international energy and mechanical engineering journals, and has also served as guest editor for sustainable energy journal special issues including on power-to-X and decarbonization of energy-intensive industry. She serves on several international conference program committees focused on energy technologies and electronics thermal management.

Invited papers (9)
SPECIAL SESSION: Recent advances in renewable energy systems
Session resume:

In the last few years, several countries have experienced a dramatic increase of the overall energy demand. Simultaneously, greenhouse gas emissions are increasing, determining an increase of meteorological catastrophic events in several parts of the world. In this framework, several countries agreed on the necessity to develop a novel sustainable energy paradigm and to perform all the actions required to limit the increase of the Earth’s average temperature. This goal can be achieved through different strategies: developing novel efficient energy conversion systems, promoting energy efficiency and a more conscious use of energy, promoting the development of renewable energy sources. As a consequence, during the past decades, a special effort was made by several countries for the development of novel and innovative energy systems, mainly based on renewable sources. Such effort determined a number of positive effects, such as energy diversification, reduction of pollutant emissions, development of local green economies, and many others. On the other hand, the large non-programmable amount of renewable energy delivered to the electric grids poses severe issues in terms of management of excess energy and balance between demand and supply. This phenomenon is determining an increasing cost of the management of electric grids, which is typically transferred to the final consumer.

In this context, this Special Session aims at collecting the most significant and recent studies dealing with the integration of renewable technologies into new or existing water, electricity, heating, and cooling networks. The session will include the papers investigating the possible utilization of renewables for multiple purposes (power production, heating, cooling, water management, transports), aiming at increasing the diffusion of such sources into our energy systems. Papers investigating novel electrical and thermal storage systems, as well as the adoption of electrical vehicles, are welcome, too.

[+ more]
Prof. Francesco Calise
University of Naples Federico II
Naples, Italy
Francesco Calise was born in 1978 and graduated cum laude in mechanical engineering from the University of Naples Federico II, Italy in 2002. He obtained the Ph.D. degree in Mechanical and Thermal Engineering in 2006. From 2006 to 2014, he is a Researcher and Assistant Professor of applied thermodynamics at the University of Naples Federico II. In 2014 he has been entitled as Associate Professor at the University of Naples Federico II. His research activity has been mainly focused on the following topics: fuel cells, advanced optimization techniques, solar thermal systems, concentrating photovoltaic/thermal photovoltaic systems, energy saving in buildings, solar heating and cooling, Organic Rankine Cycles, geothermal energy, dynamic simulations of energy systems, renewable Polygeneration systems and many others. He was invited lecturer for some courses or Conferences (UK and Finland). He teaches several courses of energy management and applied thermodynamics at the University of Naples Federico II for BsC, MS and PhD students. He was a supervisor of several Ph.D. degree theses. He is a reviewer of about 30 international Journals. He was involved in several Research Projects funded by EU and Italian Government. He is Member of the Editorial Board of 10 International Journals. He was a Conference Chair and/or member of Scientific Committee in several session of International Conferences. He is Vice-Chair Cross Reader for the FET OPEN Projects funded by EU
Prof. Laura Vanoli
Università degli Studi di Napoli Parthenope
Napoli, Italy
Laura Vanoli is a full professor of Applied Thermodynamics at the Engineering Department of the University of Naples Parthenope. In 1997 she obtained her five years master degree with honours in Mechanical Engineering from the University of Cassino. In 1999 she gained her Ph.D. in Industrial Engineering at the same University. From November 1999 to October 2003 she was an assistant professor at the Department of Industrial Engineering at the University of Cassino. From November 2003 to January 2005 she worked as an assistant professor at the Department of Food Science of the University of Naples Federico II. In September 2004, she was visiting researcher at the Energy Management Institute of Virginia Polytechnic Institute and State University (USA). From January 2005 to October 2008 she has been working as an associate professor at the Department of Food Science of the University of Naples Federico II. From November 2008 to December 2016 she was an associate professor at the Engineering Department of the University of Naples Parthenope. From December 2016 to February 2019 she was a full professor at the Civil and Mechanical Engineering Department of the University of Cassino and Lazio Meridionale.
Her research interests cover: thermodynamic and thermo-economic analysis of advanced energy systems, energy saving, renewable energy sources, thermo-fluid-dynamic measurement. Over the last ten years, she has been working on simulation optimization and exergy analysis of hybrid SOFC-gas turbine power systems, dynamic simulation and thermoeconomic analysis of polygeneration systems based on renewable technologies and sources. On these subjects, she has written more than 100 scientific papers, mostly published in International Journals and Proceedings of International Conferences.
She has coordinated and participated in several research projects funded by the Italian Ministry for Research (MIUR), and private companies. She thought several modules at the Universities of Cassino, Napoli Federico II and Napoli Parthenope: Energetics for Master of Science degree in Mechanical Engineering, Applied thermodynamics for BA degree in Food technology, Applied thermodynamics for BA degree in Industrial Engineering, Exergy analysis for BA degree in Management Engineering, Energy Management for Master degree in Management Engineering.
Since 2015 she has been an adjunct researcher at the Engines Institute of the Italian National Research Council.
Currently, she is the coordinator of the Ph.D. international program in Energy Science and Engineering of the University of Naples “Parthenope”.
Dr. Maria Vicidomini
University of Naples Federico II
Naples, Italy
Maria Vicidomini was born in 1988 and graduated cum laude in Environmental engineering at the University of Naples Federico II, Italy in 2013. From 2013 to 2014, she was a fellow researcher at the University of Naples Federico II. She obtained the Ph.D. degree in Industrial Engineering in 2018. In 2019 she has been entitled as Researcher at the University of Naples Federico II. Her research activity has been mainly focused on the development of dynamic simulation models for the energy, exergy, economic and environmental analysis and impact of innovative systems for distributed polygeneration systems, supplied by renewable energy (geothermal, solar, wind energy) and natural gas. Building Integrated Solar Thermal Systems and internal combustion engines for the production of heat, cool and power. Solar heating and cooling systems. Solar desalination systems. Hybrid renewable system based on wind, solar and geothermal energy. Electrical storage. Electric vehicles. Her research activity is also developed in cooperation with several international institutions (Portugal, Iran, Turkey, Denmark, China, Croatia, Poland, Germany, Canada). She was a supervisor of several BsC, MS and PhD students at the University of Naples Federico II. She is a reviewer of about 15 international Journals. She was guest editor in special issues on International Journals. She is a member of the scientific committee of several international conferences and she is also involved in the organizing committee of the CEER 2020 Conferences. She was a conference chair and presenter in several sessions of International Conferences.

Invited papers (16)
SPECIAL SESSION: Renewable energies, innovative HVAC systems and envelope technologies for the energy efficiency of buildings
Session resume:

The need to increase the sustainability and energy efficiency of buildings has led to the development and implementation of innovative buildings design criteria and standards with special attention to the integration of renewable energies, use of innovative HVAC systems and implementation of new building envelope technologies.

The goal of this special session is to present new research results, case studies and practices aimed at reducing the energy demand of residential, commercial, public, and industrial buildings, by also decreasing the related environmental impact and improving the occupants’ comfort. Specifically, the special session is dedicated to the following topics:

  • Automation and innovative control for HVAC systems in buildings;
  • Building integrated renewable energy systems;
  • Smart district and communities;
  • District heating and cooling;
  • Energy sustainability, resilience and climate adaptability of buildings;
  • Heat recovery systems in buildings;
  • Geothermal heat pumps systems;
  • Innovative HVAC&R systems;
  • Life cycle energy efficiency of buildings and embodied energy;
  • Natural, mechanical and hybrid ventilation;
  • Passive envelope technologies and new materials;
  • Solar heating and cooling;
  • Thermal energy storage technologies;
  • Thermally active building systems.
Prof. Annamaria Buonomano
University of Naples Federico II
Napoli, Italy
Annamaria Buonomano obtained a B.Sc. and a M.Sc. in Engineering Management summa cum laude in 2004 and 2006 from University of Naples Federico II and a Ph.D. in Energetics from University of Palermo in 2010. She was visiting scholar at the Energy Performance of Buildings Group of the Lawrence Berkeley National Laboratory (Berkeley, USA) in 2009, researcher at the Ben Gurion National Solar Energy Center of the Jacob Blaustein Institutes for Desert Research of University of Ben-Gurion (Sde Boqer, Israel) in 2011, and several times visiting scientist at Concordia University (Montreal, Canada), where she was appointed as Affiliate Assistant Professor in the Department of Building, Civil and Environmental Engineering in 2017. She is actively involved in research topics regarding building energy efficiency, with a particular focus on the development of performance simulation models and investigation of innovative building-plant solutions, based on integrated construction techniques, innovative HVAC systems and novel renewable energy technologies including solar heating and cooling systems, concentrating photovoltaic solar thermal systems, polygeneration, vehicle-to-grid, vehicle-to-buildig and related advances concepts (B2V2B or V2B2). She is also involved in collaborative research activities relative to the design of net zero energy buildings and communities through the integration of passive solar thermal systems in buildings and the use of electric vehicles to add flexibility to buildings.
Prof. Soteris Kalogirou
Cyprus University of Technology
Limassol, Cyprus
Professor Soteris Kalogirou is at the Department of Mechanical Engineering and Materials Sciences and Engineering of the Cyprus University of Technology, Limassol, Cyprus. He is currently the Dean of the School of Engineering and Technology. In addition to his Ph.D., he holds the title of D.Sc. He is a Fellow of the European Academy of Sciences and Founding Member of the Cyprus Academy of Sciences, Letters and Arts.

For more than 35 years, he is actively involved in research in the area of solar energy and particularly in flat plate and concentrating collectors, solar water heating, solar steam generating systems, desalination, photovoltaics, and absorption cooling.

He has a large number of publications as books, book chapters, international scientific journals and refereed conference proceedings. He is Editor-in-Chief of Renewable Energy and Deputy Editor-in-Chief of Energy, and Editorial Board Member of another seventeen journals. He is the editor of the book Artificial Intelligence in Energy and Renewable Energy Systems, published by Nova Science Inc., co-editor of the book Soft Computing in Green and Renewable Energy Systems, published by Springer, editor of the book McEvoy’s Handbook of Photovoltaics, published by Academic Press of Elsevier and author of the books Solar Energy Engineering: Processes and Systems, and Thermal Solar Desalination: Methods and Systems, published by Academic Press of Elsevier.

He is a member of World Renewable Energy Network (WREN), American Society of Heating Refrigeration and Air-conditioning Engineers (ASHRAE), Institute of Refrigeration (IoR) and International Solar Energy Society (ISES).
Prof. Adolfo Palombo
University of Naples Federico II
Naples, Italy
Adolfo Palombo obtained a M.Sc. in Mechanical Engineering summa cum laude in 1992 and a Ph.D. in Thermo-Mechanical Systems in 1997 from University of Naples Federico II. He was visiting scholar in the Energy and Analysis Program, Energy and Environment Division, at the LBNL, Berkeley, U.S.A. in 1995. He is actively involved in research fields concerning energy technologies for transportation systems as well as for civil, hospital and industrial applications, such as heating and cooling, thermo-fluid dynamic measurements, power systems, renewable energies, innovative HVAC systems for energy efficiency and NZEBs. He is also involved in the development of dynamic building energy simulation tools for the assessment of energy, economic, and environmental performances of the investigated innovative systems. He is responsible of several MoUs with European and USA universities and research institutes with the aim to further collaborative research and teaching activities on energy applications. He is also responsible of several funded research projects regarding the energy efficiency of systems. He is member of: Experts committee for reviewing and evaluating research projects funded by Italian Ministry for Industry (CSEA); Management Committee of the national technological cluster Blue Italian Growth (BIG); Management Committee of the IBPSA-Italy. He was member of: Board of experts in the permanent supervisory committee of the Italian Regulatory Authority for Energy, Networks and Environment (ARERA); Analysis committees at the direction for audits of Italian Energy Services Management (GSE SpA); Management Committee of Action TU1205 (Building Integration of Solar Thermal Systems, BISTS) of the European COST (Cooperation in Science and Technology).

Invited papers (20)
SPECIAL SESSION: CROSS BOrder management of variable renewable energies and storage units enabling a transnational Wholesale market (CROSSBOW)
Session resume:

In the past few decades, besides the conventional security and reliability considerations, power systems short term planning and operation has been increasingly influenced by challenging requirements related to:

  • integrated electricity markets with a goal of maximising competition in electricity production, services and supply, which in ideal case should extend trading electricity and balancing services until a few minutes before real-time;
  • incorporation of increasing quantities of highly volatile production of electricity from renewable energy sources (RES) into the market and system operation, often along with regulatory requirements for priority dispatch and non-curtailment of RES generation;
  • integration of storage technologies and promotion of new market roles of storage plants;
  • customer rights, especially in aggregation of small customers for market participation;
  • TSO-DSO cooperation and coordination to facilitate efficient use of flexibility assets for provision of network services;
  • increased use of ICT and other new technologies to support smart grids development;
  • cyber security and data protection issues due to increased use of ICT and customer participation;
  • transparency of policy and all undertaken activities.

CROSSBOW is an EC funded project which aims to contribute to efficient power systems operation, by cross-border coordination of available resources. Its major goal is to propose models and tools for shared use of resources to develop cross-border management of variable RES and storage units, thus enabling a higher penetration of clean energies. As a result, reduction of network operational costs and increase of the economic benefits of the use of clean energies is expected.

[+ more]
Dr. Aleksandra Krkoleva
Ss Cyril and Methodius University, Faculty of Electrical Engineering and Information Technologies
Skopje, North Macedonia
Aleksandra Krkoleva Mateska received her PhD degree in electrical engineering from Ss Cyril and Methodius University, Faculty of Electrical Engineering and Information Technologies (FEEIT) in Skopje. Her research interests include Smart Grids, electricity markets and regulation and computer applications in power systems. She is author and co-author of papers published in international journals and conference proceedings. She has been actively involved in the EU funded projects as RISE, MoreMicrogrids, SEETSOC and CROSSBOW as well as in other international and national projects and studies related to her field of interest. She is currently Associate professor at Ss Cyril and Methodius University, FEEIT, working at the Power Systems Department. She has been Chair of IEEE PES of the local IEEE Section and is currently General Secretary of the National Committee of CIGRE in North Macedonia

Invited papers (6)
SPECIAL SESSION: Environmental safety of bio-waste in the circular economy – potential for energy and matter recovery
Session resume:

The circular economy vision assumes a continuous positive development cycle that conserves natural capital, optimizes the use of scare resources and encourages the recycling of organic and inorganic substances. In those terms, imitating the real circular biologic cycle may facilitate the replacement of previously used linear strategy. In this context, the main aim can be reached only in the transversal interdisciplinary dimension that allows for a wide view on the life cycle of organic waste. Biodegradable waste is formed within activities carried out by different entities: municipality (sewage sludge, green waste such as grass, branches and leaves, organic household waste such as kitchen waste); industrial and business activity (industrial waste generated by producing sugar and alcohol, beer brewing, processing grain, fruits, vegetables , fish, meat and milk; public catering waste, including kitchen waste and trade outlet waste, agricultural waste embraces; waste from livestock holdings such as manure, slurry, utilizable waste, etc.) plant-growing waste, including straw, chaff, grass, non-utilizable fruit, grain, vegetables or their pieces, etc. Focusing on the fact that the bio-based sector as one of the most resource-intensive in Europe circular economy gives unequal opportunity maximizing the matter and energy recovery.  

Thus, the Session covers the following objectives :

[+ more]
Ms. Agata Rosińska
Czestochowa University of Technology
Częstochowa, Poland
PhD, DSc, Associate Professor Czestochowa University of Technology
Faculty of Infrastructure and Environment
Department of Environmental Engineering
42-200 Częstochowa
Dąbrowskiego 69 Str.
POLAND
e-mail: rosinska@is.pcz.czest.pl


Dr. Agata Rosińska is the Vice Head of the Department for Environmental Engineering in the Faculty of Infrastructure and Environment at Czestochowa University of Technology.
She completed her PhD with habilitation in the field of environmental engineering at the Department of Chemistry, Water and Wastewater Technology of Faculty of Environmental Engineering. Dr Rosinska’s PhD thesis is entitled “Quantitative–qualitative changes of PCB in sewage sludge stabilised anaerobically”. She completed her scientific internships in various international insitutions: Mediterranean Agronomic Institute of Chania Crete (Greece), Universita “Stefan cel Mare” Suceava, Department of Forestry and Environmental Protection (Romania), Niigata University, Department of Chemistry and Chemical Engineering (Japan), Portugal, Universidade do Porto (Portugal), Universidad Politécnica de Cartagena (Spain). She is member of the expert committees for evaluation of applications within several criteria, such as: financial, scientifically-technical and economically-business as well as big entrepresies’ projects.
Dr. Rosińska is the author of over 110 international and national scientific publications on natural environmental pollution by selected persistent organic compounds. Her current Scopus h-index is 5. She is a recognised specialist in chromatographic determination of organic micropollutants in environmental samples. She has been conducting technological research on complementing the area of knowledge regarding the inhibition of organic micropollutants in the sewage sludge anaerobic digestion process. Dr. Rosińska is interested in the influence of aerobic and anaerobic stabilisation on changes in selected organic micropollutants in sediments. She developed methodology for determination of polychlorinated biphenyls in sewage sludge. Additionally, her area of interest is also the role of biodegradable organic matter in the process of water disinfection, the coagulation process and adsorption for the removal of organic micropollutants from water intended for human consumption and the implementation of water safety plans.
Dr. Anna Grobelak
Czestochowa University of Technology
Częstochowa, Poland
Associate Professor Czestochowa University of Technology, Institute of Environmental Engineering,; Co-ordinator Biotechnology Program; Co-ordinator, PG Dip. in Biotechnology,
Czestochowa University of Technology;Czestochowa 42200, Poland; email: anna.grobelak@pcz.pl

Czestochowa University of Technology 2007-2012;Ph.D (Environmental engineering) : Research conducted at Institute of Environmental Engineering, 2012- now.
Teaching experience:
Lecturer, December 2012-now, Faculty of Environmental Engineering and Infrastructure, Czestochowa, Poland.
Is an assistant professor(Czestochowa University of Technology, Faculty of Infrastructure and Environment) specializing in environmental engineering and biotechnology, molecular toxicology expression of specific gens under stress conditions of plants and siderophores production. Made contributions to the field of waste water systems treatment, molecular diagnosis of pathogens, bioremediation technologies. Author of patents , studies and implementations for the industry. Much of her work has been conducted with participation in research projects and with industry concerning waste and sewage sludge management, soil treatment, phytoremediation, bioremediation, bioaugmentation, organic carbon sequestration and plants growth promoting bacteria. Also, she is a consultant national funding agency (NCBiR) and was Horizon 2020 evaluator. Moreover and has been working on national and international research teams (Norwegian University of Science and Technology (NTNU, Trondheim) , Norwegian University of Life Sciences (NMBU, Aas), industrial companies (Poland) and also received training related to innovations and commercialization (Lund University, Sweden).
Research articles in peer reviewed Journals and book chapters
https://scholar.google.com/citations?user=8CLgXjIAAAAJ&hl=pl&oi=ao. https://orcid.org/0000-0003-1972-9734

Since 2013
Citations 1938
h-indeks 20
i10-indeks 37

.
.
.
Dr. Anna Grosser
Czestochowa University of Technology
czestochowa, Poland
Dr. Krzysztof Fijalkowski
Czestochowa University of Technology
Czestochowa, Poland
Dr Krzysztof Fijałkowski have a PhD in technical sciences in the field of environmental engineering, which was awarded in 2009. From October 2009, dr inż. Krzysztof Fijałkowski works at the Institute of Environmental Engineering at the Czestochowa University of Technology, from 2011 as an Assistant Professor. He is the author of over 62 articles published in domestic and foreign journals and conference materials. His current Scopus h-index is 6 (GShoolar-h10). Dr Krzysztof Fijałkowski publishes in such journals as: Environmental Research, Journal of Environmental Management, Journal of Nanomaterials, Desalination and Water Treatment, Archives of Environmental Protection, Applied and Environmental Soil Science. He is a co-author of one patent, and a reviewer in the Journal of Applied Microbiology, International Journal of Phytoremediation and other journals. He participated in the implementation of many team research projects on an international scale. Collaborates with foreign researchers, including Norwegian National University of Science and Technology in Trondheim, Norwegian University of Life Sciences in Aas, Norway, School of Science, Sligo Ireland. His field of interest are:
• testing the toxicity of soils and other environmental matrices during remediation processes using plant tests based on new solutions, i.e. modification of test media and analysis of biochemical indicators in the evaluation of plant stress response
• assessment of bactericidal and bacteriostatic properties of a new class of copper-containing nanomaterials on a silica support
• analyzing of new contaminants in sewage sludge.
• supporting the processes of bioremediation of soils contaminated with heavy metals - the use of phytoextraction, phytostabilization and phytoremediation,
• analysis of the potential of filamentous fungi as indicator organisms and biocomponents in preparations supporting environmental processes of biological waste treatment and remediation.

Invited papers (16)


SPONSORS





SDEWES INDEX
Benchmarking the performance of cities across energy, water and environment systems
related metrics presents an opportunity to trigger policy learning, action, and cooperation to bring cities closer to sustainable development.

DBG